

NEXCOM International Co., Ltd.

Mobile Computing Solutions Vehicle Telematics Computer VTC 7252 Series User Manual

NEXCOM International Co., Ltd. Published March 2022

www.nexcom.com

CONTENTS

Preface

NE(COM

Copyright	v
Disclaimer	
Acknowledgements	v
Regulatory Compliance Statements	
Declaration of Conformity	
RoHS Compliance	vi
Warranty and RMA	vii
Technical Support and Assistance	x
Conventions Used in this Manual	
Global Service Contact Information	xi
Package Contents	xiii
Ordering Information	

Chapter 1: Product Introduction

1	VTC 7252-7C4IP Physical Features
1	Front View
1	Rear View
2	Hardware Specifications
4	Connector Numbering
4	Front View
4	Rear View
	Rear View Hardware Specifications Connector Numbering Front View.

Chapter 2: External Connectors Pinout Description

Reset Button	ŝ
LED Indicators	-

M12 Multiport Connector	6
M12 COM3 Connector	6
CFast Card Slot	7
Dual USB 3.1 Port	7
Micro SIM1/SIM2 Slots	8
M12 COM2 Connector	8
M12 COM1 Connector	9
M12 USB 2.0 Connector	9
M12 Audio Connector	10
VGA Connector	10
M12 LAN1 & LAN2 Connector	
PoE1 to PoE4 Ports	
DC Input	

Chapter 3: Jumpers and Connectors

Before You Begin	13
Precautions	13
Jumper Settings	14
Jumper and DIP Switch Settings	16
RTC Clear Selection	16
Input Voltage Control Selection	16
Internal Connectors	17
COM1 RS232 Connector	17
COM2 RS232 Connector	17
COM3 RS232/RS422/RS485 Connector	18
DIO Connector	18

	Audio Phone Jack	19
	HDMI Connector	19
	SATA Connector 1	20
	SATA Connector 2	20
	GPS Wire to Board Connector	21
	GPS Wire to Board Connector (DR to GPS Module)	21
	GPS Battery Connector	22
	GPS Wire to Board Connector (DR IN)	22
	RTC Battery Connector	23
	Debug 80 Port Connector	23
	USB Connectors	24
	MCU Debug Port	24
	MCU Download Port	25
	Dual CAN Connector	25
	CAN1 Download Connector	26
	CAN2 Download Connector	26
	V2X Power Connector	27
	DC Out Connector	27
	Power Button Connector	
	M.2 Key E Socket with USB 2.0 + 2 x PCIe 3.0 (For Wi-Fi/BT)	
	(BOM Optional)	30
	Full-size Mini-PCIe Socket with USB 2.0 + PCIe 3.0 (For Wi-Fi/BT) .	30
	Full-size Mini-PCIe Socket with USB 2.0 + PCIe 3.0/SATA 3.0 (For	
m	ISATA/C-V2X/DSRC)	
	Full-size Mini-PCIe Socket with USB 2.0 + PCIe 3.0/SATA 3.0 (For	
m	ISATA)	
	M.2 3042/3050/3052 Key B Socket with USB 2.0 + USB 3.2 Gen	
LT	E/5G NR)	33

Chapter 4: System Setup

Removing the Chassis Cover	
Installing a Storage Drive	

Installing a WWAN Module (M.2)	37
Installing a Wi-Fi Module (M.2)	38
Installing a Wi-Fi/mSATA Module (Mini-PCIe)	39
Installing a SO-DIMM Memory Module	40
Inserting SIM Cards	41
Inserting a CFast Card	42
Installing Heatsink for LTE/5G and mSATA Modules	43

Appendix A: Software Demo Utility for I/O Ports of Function Control

enu Screen	47
1. System 14	47
2. System 24	
3. I/O5	
1. Module	52
5. PoE	54
5. Event	54
7. CAN Utility5	55
3. G-Sensor	57

Appendix B: GNSS Feature

uBlox-NEO M8 Overview	59
Technical Specifications	59

Appendix C: GNSS with Dead Reckoning Feature

uBlox-NEO M8L Overview	61
Technical Specifications	62

Appendix D: Signal Connection of DI/DO

GPIO Pinout Description	4
Digital Input6	5

Digital Output	.66
----------------	-----

Appendix E: Vehicle Power Management Setup

Startup and Shutdown Voltage Setting	68
Power-on Delay Setting	70
Power-off Delay Setting	72
WLAN and mSATA Setting	74

Appendix F: Pin Definition for the Multiport Cable

Appendix G: Com Port Table	77
Pinout Description	/6

Appendix H: Power	Consumption	78
-------------------	--------------------	----

PREFACE

Copyright

This publication, including all photographs, illustrations and software, is protected under international copyright laws, with all rights reserved. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written consent from NEXCOM International Co., Ltd.

Disclaimer

The information in this document is subject to change without prior notice and does not represent commitment from NEXCOM International Co., Ltd. However, users may update their knowledge of any product in use by constantly checking its manual posted on our website: http://www.nexcom.com. NEXCOM shall not be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of any product, nor for any infringements upon the rights of third parties, which may result from such use. Any implied warranties of merchantability or fitness for any particular purpose is also disclaimed.

Acknowledgements

VTC 7252-7C4IP is a trademark of NEXCOM International Co., Ltd. All other product names mentioned herein are registered trademarks of their respective owners.

Regulatory Compliance Statements

This section provides the FCC compliance statement for Class A devices and describes how to keep the system CE compliant.

Declaration of Conformity

FCC

This equipment has been tested and verified to comply with the limits for a Class A digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area (domestic environment) is likely to cause harmful interference, in which case the user will be required to correct the interference (take adequate measures) at their own expense.

CE

The product(s) described in this manual complies with all applicable European Union (CE) directives if it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be used. Maintaining CE compliance also requires proper cable and cabling techniques.

RoHS Compliance

NEXCOM RoHS Environmental Policy and Status Update

NEXCOM is a global citizen for building the digital infrastructure. We are committed to providing green products and services, which are compliant with

European Union RoHS (Restriction on Use of Hazardous Substance in Electronic Equipment) directive 2011/65/EU, to be your trusted green partner and to protect our environment.

RoHS restricts the use of Lead (Pb) < 0.1% or 1,000ppm, Mercury (Hg) < 0.1% or 1,000ppm, Cadmium (Cd) < 0.01% or 100ppm, Hexavalent Chromium (Cr6+) < 0.1% or 1,000ppm, Polybrominated biphenyls (PBB) < 0.1% or 1,000ppm, and Polybrominated diphenyl Ethers (PBDE) < 0.1% or 1,000ppm.

In order to meet the RoHS compliant directives, NEXCOM has established an engineering and manufacturing task force in to implement the introduction of green products. The task force will ensure that we follow the standard NEXCOM development procedure and that all the new RoHS components and new manufacturing processes maintain the highest industry quality levels for which NEXCOM are renowned.

How to recognize NEXCOM RoHS Products?

For existing products where there are non-RoHS and RoHS versions, the suffix "(LF)" will be added to the compliant product name.

All new product models launched after January 2013 will be RoHS compliant. They will use the usual NEXCOM naming convention.

Warranty and RMA

NEXCOM Warranty Period

NEXCOM manufactures products that are new or equivalent to new in accordance with industry standard. NEXCOM warrants that products will be free from defect in material and workmanship for 2 years, beginning on the date of invoice by NEXCOM.

NEXCOM Return Merchandise Authorization (RMA)

- Customers shall enclose the "NEXCOM RMA Service Form" with the returned packages.
- Customers must collect all the information about the problems encountered and note anything abnormal or, print out any on-screen messages, and describe the problems on the "NEXCOM RMA Service Form" for the RMA number apply process.
- Customers can send back the faulty products with or without accessories (manuals, cable, etc.) and any components from the card, such as CPU and RAM. If the components were suspected as part of the problems, please note clearly which components are included. Otherwise, NEXCOM is not responsible for the devices/parts.
- Customers are responsible for the safe packaging of defective products, making sure it is durable enough to be resistant against further damage and deterioration during transportation. In case of damages occurred during transportation, the repair is treated as "Out of Warranty."
- Any products returned by NEXCOM to other locations besides the customers' site will bear an extra charge and will be billed to the customer.

Repair Service Charges for Out-of-Warranty Products

NEXCOM will charge for out-of-warranty products in two categories, one is basic diagnostic fee and another is component (product) fee.

System Level

- Component fee: NEXCOM will only charge for main components such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistor, capacitor.
- Items will be replaced with NEXCOM products if the original one cannot be repaired. Ex: motherboard, power supply, etc.
- Replace with 3rd party products if needed.
- If RMA goods can not be repaired, NEXCOM will return it to the customer without any charge.

Board Level

- Component fee: NEXCOM will only charge for main components, such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistors, capacitors.
- If RMA goods can not be repaired, NEXCOM will return it to the customer without any charge.

Warnings

Read and adhere to all warnings, cautions, and notices in this guide and the documentation supplied with the chassis, power supply, and accessory modules. If the instructions for the chassis and power supply are inconsistent with these instructions or the instructions for accessory modules, contact the supplier to find out how you can ensure that your computer meets safety and regulatory requirements.

Cautions

Electrostatic discharge (ESD) can damage system components. Do the described procedures only at an ESD workstation. If no such station is available, you can provide some ESD protection by wearing an antistatic wrist strap and attaching it to a metal part of the computer chassis.

Safety Information

Before installing and using the device, note the following precautions:

- Read all instructions carefully.
- Do not place the unit on an unstable surface, cart, or stand.
- Follow all warnings and cautions in this manual.
- When replacing parts, ensure that your service technician uses parts specified by the manufacturer.
- Avoid using the system near water, in direct sunlight, or near a heating device.
- The load of the system unit does not solely rely for support from the rackmounts located on the sides. Firm support from the bottom is highly necessary in order to provide balance stability.
- The computer is provided with a battery-powered real-time clock circuit. There is a danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Discard used batteries according to the manufacturer's instructions.

Installation Recommendations

Ensure you have a stable, clean working environment. Dust and dirt can get into components and cause a malfunction. Use containers to keep small components separated.

Adequate lighting and proper tools can prevent you from accidentally damaging the internal components. Most of the procedures that follow require only a few simple tools, including the following:

- A Philips screwdriver
- A flat-tipped screwdriver
- A grounding strap
- An anti-static pad

Using your fingers can disconnect most of the connections. It is recommended that you do not use needlenose pliers to disconnect connections as these can damage the soft metal or plastic parts of the connectors.

Warning!

- 1. Handling the unit: carry the unit with both hands and handle it with care.
- 2. Maintenance: to keep the unit clean, use only approved cleaning products or clean with a dry cloth.
- 3. CompactFlash: Turn off the unit's power before inserting or removing a CompactFlash storage card.
- 4. SIM: Do not insert or remove the SIM card when the **system** is **powered** on. Always **power** off the **system** before inserting or removing the SIM card.

NÈ(COM

Safety Precautions

- Read these safety instructions carefully.
- Keep this User Manual for later reference.
- Disconnect this equipment from any AC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- Keep this equipment away from humidity.
- Put this equipment on a stable surface during installation. Dropping it or letting it fall may cause damage.
- Do not leave this equipment in either an unconditioned environment or in a above 40°C storage temperature as this may damage the equipment.
- The openings on the enclosure are for air convection to protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- Place the power cord in a way so that people will not step on it. Do not place anything on top of the power cord. Use a power cord that has been approved for use with the product and that it matches the voltage and current marked on the product's electrical range label. The voltage and current rating of the cord must be greater than the voltage and current rating marked on the product.
- All cautions and warnings on the equipment should be noted.

- If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- Never pour any liquid into an opening. This may cause fire or electrical shock.
- Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- If one of the following situations arises, get the equipment checked by service personnel:
 - a. The power cord or plug is damaged.
 - b. Liquid has penetrated into the equipment.
 - c. The equipment has been exposed to moisture.
 - d. The equipment does not work well, or you cannot get it to work according to the user's manual.
 - e. The equipment has been dropped and damaged.
 - f. The equipment has obvious signs of breakage.
- Do not place heavy objects on the equipment.
- The unit uses a three-wire ground cable which is equipped with a third pin to ground the unit and prevent electric shock. Do not defeat the purpose of this pin. If your outlet does not support this kind of plug, contact your electrician to replace your obsolete outlet.
- CAUTION: DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY REPLACED. REPLACE ONLY WITH THE SAME OR EQUIVALENT TYPE RECOMMENDED BY THE MANUFACTURER. DISCARD USED BATTERIES ACCORDING TO THE MANUFACTURER'S INSTRUCTIONS.

NE:COM

Technical Support and Assistance

- 1. For the most updated information of NEXCOM products, visit NEXCOM's website at www.nexcom.com.
- 2. For technical issues that require contacting our technical support team or sales representative, please have the following information ready before calling:
 - Product name and serial number
 - Detailed information of the peripheral devices
 - Detailed information of the installed software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wordings of the error messages

Warning!

- 1. Handling the unit: carry the unit with both hands and handle it with care.
- 2. Maintenance: to keep the unit clean, use only approved cleaning products or clean with a dry cloth.

Conventions Used in this Manual

Warning:

Information about certain situations, which if not observed, can cause personal injury. This will prevent injury to yourself when performing a task.

Caution:

Information to avoid damaging components or losing data.

Note:

Provides additional information to complete a task easily.

Global Service Contact Information

Headquarters NEXCOM International Co., Ltd.

9F, No. 920, Zhongzheng Rd., Zhonghe District, New Taipei City, 23586, Taiwan, R.O.C. Tel: +886-2-8226-7786 Fax: +886-2-8226-7782 www.nexcom.com

Asia

Taiwan NexAloT Headquarters Industry 4.0 and Cloud Services

13F, No.922, Zhongzheng Rd., Zhonghe District, New Taipei City, 23586, Taiwan, R.O.C. Tel: +886-2-8226-7796 Fax: +886-2-8226-7926 Email: jacobhuang@nexaiot.com www.nexaiot.com

NexAloT Co., Ltd. Taichung Office

NEXCOM

16F, No.250, Sec.2, Chongde Rd., Beitun District, Taichung City, 406, Taiwan, R.O.C. Tel: +886-4-2249-1179 Fax: +886-4-2249-1172 Email: jacobhuang@nexaiot.com www.nexaiot.com

NexCOBOT Taiwan Co., Ltd.

13F, No.916, Zhongzheng Rd., Zhonghe District, New Taipei City, 23586, Taiwan, R.O.C. Tel: +886-2-8226-7786 Fax: +886-2-8226-7926 Email: jennyshern@nexcobot.com www.nexcobot.com

GreenBase Technology Corp.

13F, No.922, Zhongzheng Rd., Zhonghe District, New Taipei City, 23586, Taiwan, R.O.C. Tel: +886-2-8226-7786 Fax: +886-2-8226-7900 Email: vivianlin@nexcom.com.tw www.nexcom.com.tw

DivioTec Inc.

19F-1A, No.97, Sec.4, ChongXin Rd., Sanchong District, New Taipei City, 24161, Taiwan, R.O.C. Tel: +886-2-8976-3077 Email: sales@diviotec.com www.diviotec.com

AloT Cloud Corp.

13F, No.922, Zhongzheng Rd., Zhonghe District, New Taipei City, 23586, Taiwan, R.O.C. Tel: +886-2-8226-7786 Fax: +886-2-8226-7782 Email: alantsai@aiotcloud.net www.aiotcloud.dev

EMBUX TECHNOLOGY CO., LTD.

13F, No.916, Zhongzheng Rd., Zhonghe District, New Taipei City, 23586, Taiwan, R.O.C. Tel: +886-2-8226-7786 Fax: +886-2-8226-7782 Email: info@embux.com www.embux.com

TMR TECHNOLOGIES CO., LTD.

13F, No.916, Zhongzheng Rd., Zhonghe District, New Taipei City, 23586, Taiwan, R.O.C. Tel: +886-2-8226-7786 Fax: +886-2-8226-7782 Email: services@tmrtek.com www.tmrtek.com

China NEXSEC Incorporated

201, Floor 2, Unit 2, Building 15, Yard 3, Gaolizhang Road, Haidian District, Beijing, 100094, China Tel: +86-10-5704-2680 Fax: +86-10-5704-2681 Email: marketing@nexsec.cn www.nexsec.cn

NEXCOM Shanghai

Room 406-407, Building C, No 154, Lane 953, Jianchuan Road, Minhang District, Shanghai, 201108, China Tel: +86-21-5278-5868 Fax: +86-21-3251-6358 Email: sales@nexcom.cn www.nexcom.cn

NEXCOM Surveillance Technology Corp.

Floor 8, Building B3, Xiufeng Industrial Zone, GanKeng Community, Buji Street, LongGang District, ShenZhen, 518112, China Tel: +86-755-8364-7768 Fax: +86-755-8364-7738 Email: steveyang@nexcom.com.tw www.nexcom.cn

NEXGOL Chongqing

1st Building No.999, Star Boulevard, Yongchuan Dist, Chongqing City, 402160, China Tel: +86-23-4960-9080 Fax: +86-23-4966-5855 Email: sales@nexgol.com.cn www.nexcobot.cn

Beijing NexGemo Technology Co.,Ltd.

2F, Gemotech Building, No.1, Development Rd., Changping International Information Industry Base, Changping District, Beijing, 102206, China Tel: +86-10-8072-2025 Fax: +86-10-8072-2022 Email: sales@gemotech.cn www.nexgemo.cn

Japan NEXCOM Japan

9F, Tamachi Hara Bldg., 4-11-5, Shiba Minato-ku, Tokyo, 108-0014, Japan Tel: +81-3-5419-7830 Fax: +81-3-5419-7832 Email: sales@nexcom-jp.com www.nexcom-jp.com

America USA NEXCOM USA

46665 Fremont Blvd., Fremont CA 94538, USA Tel: +1-510-656-2248 Fax: +1-510-656-2158 Email: sales@nexcom.com www.nexcomusa.com

Europe United Kingdom NEXCOM EUROPE

10 Vincent Avenue, Crownhill Business Centre, Milton Keynes, Buckinghamshire MK8 0AB, United Kingdom Tel: +44-1908-267121 Fax: +44-1908-262042 Email: sales.uk@nexcom.eu www.nexcom.com

Package Contents

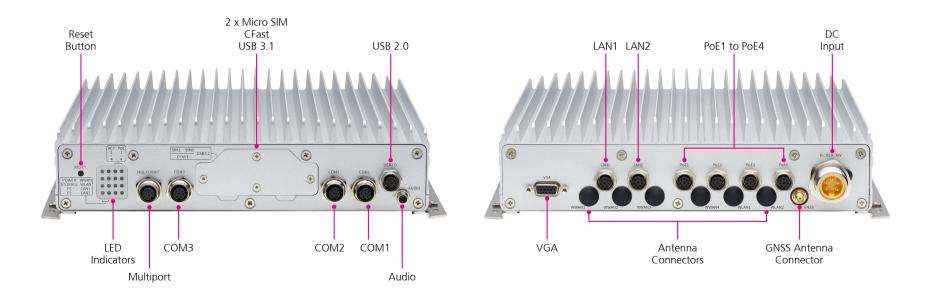
Before continuing, verify that the VTC 7252-7C4IP package that you received is complete. Your VTC 7252-7C4IP package should have all the items listed in the following table.

Item	P/N	Name	Qty
1	50311F0270X00	Round Head Screw w/Spring+Flat Washer Long Fei:P3x7L	
2	50333P0027X00	Washer for SMA Connector Kang Yang:TW-181	6
3	50333P0028X00	Washer for SMA Connector Kang Yang:WS6-0.8(B)	6
4	5061200061X00	SMA Washer Twin Adhesive for IP65 VER:A S.W.	6
5	6012200052X00	PE Zipper Bag #8	1
6	6012200053X00	PE Zipper Bag #3	1
7	602DCD1675X00	VTC 7252-7C4IP DVD Driver VER:1.0	1
8	603ANT0314X00	GPS/GLONASS/BDS Active Antenna Cable UNICTRON:EG-2B-CS-B01	1
9	603ATA0157X00	SATA Cable ST:MD-6109095	2
10	603POW0407X00	Power Cable ST:ST-2005011	1
11	5050301015X00	Mini Card Heatsink For VTC7252-7C4IP VER:A SHYUNG SHUHN Φ 20x18mm AL5052	2
12	5060200181X00	Thermal Pad E-LIN 25x25x2mm S3S K=2.0w/mk	2
13	50311F0270X00	(H)Round Head Screw w/Spring+Flat Washer Long Fei:P3x7L P3x7 iso/SW6x0.5 NI	2

Ordering Information

The following provides ordering information for VTC 7252-7C4IP.

VTC 7252-7C4IP (P/N: 10V00725200X0)


9th generation Intel[®] Core[™] i7-9700TE, 2 x 4 GB industrial grade memory, VGA output, 2 x internal 2.5" tray, 1 x CFast, 2 x LAN, 4 x PoE 802.3af/at (total 60W), 2 x mini-PCIe slot, 2 x M.2 slot, 2 x SIM socket, 2 x USB 3.1, 2 x RS232 (full), 1 x full RS232/422/485, 3 x DI & 3 x DO

CHAPTER 1: PRODUCT INTRODUCTION

VTC 7252-7C4IP Physical Features

Front View

Rear View

NE(COM

Hardware Specifications

CPU

• 9th generation Intel[®] Core™ i7-9700TE, up to 3.8 GHz, 35W, 8 Core

Chipset

Intel[®] C246 platform controller hub

Memory

 2-Channel 260-pin DDR4 SO-DIMM sockets up to 32GB/channel (64GB for two channels, non-ECC up to 2666 MHz), default 4GB + 4GB industrial grade memory

Video Output

- Chipset Intel[®] UHD Graphics 630
- 1 x VGA up to 1920 x 1200 @ 60Hz
- 1 x HDMI (4096 x 2160 @ 30Hz) (option)

Storage

- 2 x 2.5" SATA 3.0 internal SSD (tray: 9.5mm height), RAID 0/1/5/10 supported
- 2 x mSATA 3.0 (occupied mini-PCle socket)

Expansion

- 1 x M.2 3042/3050/5052 Key B (USB 2.0, USB 3.2 Gen 2×1) for LTE/5G NR
- 2 x Full size mini-PCIe socket (USB 2.0, PCIe 3.0 & SATA 3.0 [BIOS selection])
- 1 x M.2 2230 Key E (USB 2.0, 2 x PCle 3.0) for Wi-Fi. (BOM option)
 1 x Full size mini-PCle socket (USB 2.0, PCle 3.0)

GNSS and Onboard Sensor

- 1 x Default U-blox NEO-M8N GNSS module for GPS/Glonass/QZSS/ Galileo/Beidou, optional modules with dead reckoning available
- TPM 2.0 by Infineon SLB9665TT2.0 (BOM option)
- 1 x 3D accelerometer and 3D gyroscope

Power over Ethernet

- 4 x Independent LAN, 10/100/1000 Mbps Intel[®] I210-IT GbE, PoE 802.3af/at max. 60W
- 2 x LAN, 10/100/1000 Mbps (1 for I219 support iAMT and WOL)

I/O Interface-Front

- 1 x Reset button
- 16 x LED indicators (including 2 x programmable LED)
- 2 x USB 3.2 Gen 2×1 type A (5V/0.9A) with cover
- 2 x External Micro SIM slot with cover
- 1 x CFast with cover
- 1 x 6-pin for audio (1 x mic-in [mono] 1 x line-out [L + R]). (option) Additional 1 x mic-in (mono) and 1 x line-out (L + R)
- 1 x M12 8-pin for 2 x USB 2.0 (5V/0.5A)
- 1 x M12 8-pin for 2 x USB 2.0 (5V/0.5A)
- 1 x M12 8-pin for full RS-232/422/485
- 2 x M12 8-pin for full RS-232
- 1 x M12 12-pin
 - 2 x Isolated CAN Bus 2.0B
 - 3 x DI, and 3 x DO
 - GND

- 1 x 8-pin for M12 (internal reservation)
 - 12VDC (2A) output
 - RS-232 (TX & RX)
 - Remote power button
 - Reset button
 - Sleeping mode button

I/O Interface-Rear

- 1 x VGA
- 2 x M12 A-code LAN port, 10/100/1000 Mbps
- 4 x M12 A-code PoE port, 10/100/1000 Mbps
- 1 x M12 5-Pin DC Input with Ignition
- 7 x SMA antenna hole (WWAN[4]/WLAN[2]/GNSS[1])

Power Management & Software Support

- Power input 9~36VDC
- Cranking voltage: 6V~9V (< 30 seconds)
- Reverse protection, OCP & UVP
- Selectable boot-up & shut-down voltage for low power protection by software
- Setting 8-level power on/off delay time by software
- 10~255 seconds WDT support, setup by software
- SDK (Windows/Linux) including utility and sample code

Operating System

- Windows 10
- Linux

Dimensions

• 256 x 256.4 x 66.5 (W x D x H) (mm)

Weight

4.5kg

Environment

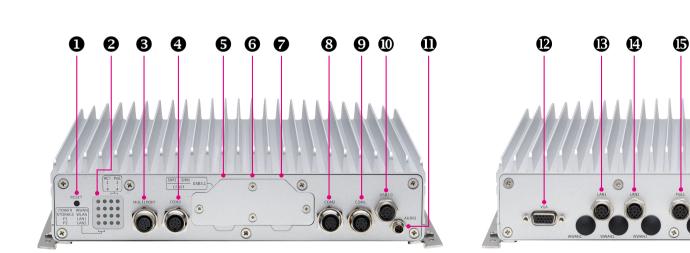
- Operating temperatures
 - -30°C~60°C (w/ industrial SSD) with air flow
- Storage temperatures: -40°C~80°C
- Relative humidity: 90% (non-condensing)
- Vibration (random)
 - 2g@5~500 Hz (in operation, SSD)
- Vibration (SSD)
 - Operating: MIL-STD-810G, Method 514.6, Category 4, common carrier US highway truck vibration exposure
 - Storage: MIL-STD-810G, Method 514.6, Category 24, minimum integrity test
- Shock (SSD)
 - Operating: MIL-STD-810G, Method 516.6, Procedure I, functional shock=40g
 - Non-operating: MIL-STD-810G, Method 516.6, Procedure V, crash hazard shock test=75g

Certifications

- CE approval
- FCC Class A
- E-Mark (E13)
- IP65 Compliance

Front View

(1)


6

Ø

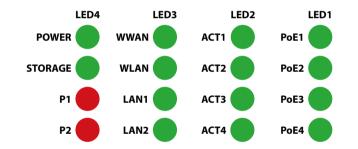
ß

Connector Numbering

The following diagrams indicate the numbers of the connectors. Use these numbers to locate the connectors' respective pinout assignments on chapter 2 of the manual.

Rear View

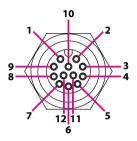
CHAPTER 2: EXTERNAL CONNECTORS PINOUT DESCRIPTION


Reset Button

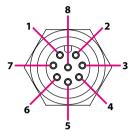
Connector number: 1

LED Indicators

Connector number: 2


LED4	LED3	LED2	LED1
Power	WWAN	PoE ACT1	PoE PWR1
Storage	WLAN	PoE ACT2	PoE PWR2
Program 1	LAN1	PoE ACT3	PoE PWR3
Program 2	LAN2	PoE ACT4	PoE PWR4

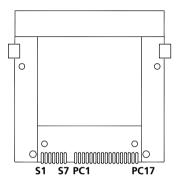
Pin	Definition
1	GND
2	RST_BTN#


M12 Multiport Connector

Connector Number: 3

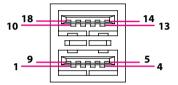
M12 COM3 Connector

Connector Number: 4


Pin	Definition	Pin	Definition
1	DI1	2	DI2
3	DI3	4	DO1
5	DO2	6	DO3
7	GND	8	CAN1 L
9	CAN1 H	10	CAN2 L
11	CAN2 H	12	GND

Pin	Definition	Pin	Definition
1	DCD (TX-)	2	RX (TX+)
3	TX (RX+)	4	DTR (RX+)
5	GND	6	DSR
7	RTS	8	CTS

CFast Card Slot

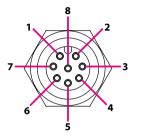

Connector number: 5

Pin	Definition	Pin	Definition
S1	GND	S2	SATA-TXP
S3	SATA-TXN	S4	GND
S5	SATA-RXN	S6	SATA-RXP
S7	GND	PC1	CDI
PC2	GND	PC3	NC
PC4	NC	PC5	NC
PC6	NC	PC7	GND
PC8	NC	PC9	NC
PC10	NC	PC11	NC
PC12	NC	PC13	CFAST_VCC3
PC14	CFAST_VCC3	PC15	GND
PC16	GND	PC17	CDO

Dual USB 3.1 Port

Connector number: 6

Pin	Definition	Pin	Definition
1	5V	2	USB_5N
3	USB_5P	4	GND
5	USB3_RX5N	6	USB3_RX5P
7	GND	8	USB3_TX5N
9	USB3_TX5P	10	5V
11	USB_6N	12	USB_6P
13	GND	14	USB3_RX6N
15	USB3_RX6P	16	GND
17	USB3_TX6N	18	USB3_TX6P

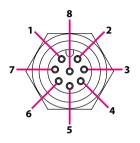

Micro SIM1/SIM2 Slots

Connector number: 7

[60
C4		C8
C3		C7
C2		C6
C1		C5
_		_

M12 COM2 Connector

Connector Number: 8


Pin	Definition	Pin	Definition
C1	UIM_PWR	C5	GND
C2	UIM_RST	C6	NC
С3	UIM_CLK	C7	UIM_DAT
C4	NC	C8	NC
		CD	CD

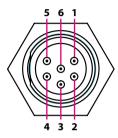
Pin	Definition	Pin	Definition
1	DCD (TX-)	2	RX (TX+)
3	TX (RX+)	4	DTR (RX+)
5	GND	6	DSR
7	RTS	8	CTS

M12 COM1 Connector

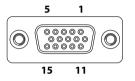
Connector Number: 9

M12 USB 2.0 Connector

Connector Number: 10


Pin	Definition	Pin	Definition
1	DCD (TX-)	2	RX (TX+)
3	TX (RX+)	4	DTR (RX+)
5	GND	6	DSR
7	RTS	8	CTS

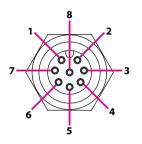
Pin	Definition	Pin	Definition
1	USB_3N	2	USB_3P
3	USB20_POWER	4	GND
5	USB_4N	6	USB_4P
7	USB20_POWER	8	GND


M12 Audio Connector

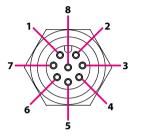
Connector Number: 11

VGA Connector

Connector number: 12


Pin	Definition	Pin	Definition
1	GND	2	MIC_Jdetect
3	MIC_L	4	Line out_R
5	Line out_Jdetect	6	Line out_L

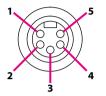
Pin	Definition	Pin	Definition
1	VGA_RED	2	VGA_GREEN
3	VGA_BLUE	4	GND
5	GND	6	GND
7	GND	8	GND
9	VGA_+5V	10	GND
11	GND	12	VGA_DATA
13	VGA_HS	14	VGA_VS
15	VGA_CLK		


M12 LAN1 & LAN2 Connector

Connector Number: 13 & 14

PoE1 to PoE4 Ports

Connector Number: 15 to 18


Pin	Definition	Pin	Definition
1	LAN_MDIOP	2	LAN_MDION
3	LAN_MDI1P	4	LAN_MDI1N
5	LAN_MDI2P	6	LAN_MDI2N
7	LAN_MDI3P	8	LAN_MDI3N

Pin	Definition	Pin	Definition
1	LAN_MDIOP	2	LAN_MDION
3	LAN_MDI1P	4	LAN_MDI1N
5	LAN_MDI2P	6	LAN_MDI2N
7	LAN_MDI3P	8	LAN_MDI3N

NECOM

DC Input

Connector Number: 19

Pin	Definition	Pin	Definition
1	VIN	2	VIN
3	GND_IN	4	GND_IN
5	IGNITION		

CHAPTER 3: JUMPERS AND CONNECTORS

This chapter describes how to set the jumpers on the VTC 7252-7C4IP motherboard.

Before You Begin

- Ensure you have a stable, clean working environment. Dust and dirt can get into components and cause a malfunction. Use containers to keep small components separated.
- Adequate lighting and proper tools can prevent you from accidentally damaging the internal components. Most of the procedures that follow require only a few simple tools, including the following:
 - A Philips screwdriver
 - A flat-tipped screwdriver
 - A set of jewelers screwdrivers
 - A grounding strap
 - An anti-static pad

NEXCOM

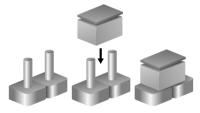
- Using your fingers can disconnect most of the connections. It is recommended that you do not use needle-nosed pliers to disconnect connections as these can damage the soft metal or plastic parts of the connectors.
- Before working on internal components, make sure that the power is off. Ground yourself before touching any internal components, by touching a metal object. Static electricity can damage many of the electronic components. Humid environment tend to have less static electricity than dry environments. A grounding strap is warranted whenever danger of static electricity exists.

Precautions

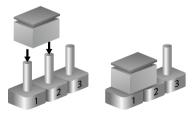
Computer components and electronic circuit boards can be damaged by discharges of static electricity. Working on the computers that are still connected to a power supply can be extremely dangerous.

Follow the guidelines below to avoid damage to your computer or yourself:

- Always disconnect the unit from the power outlet whenever you are working inside the case.
- If possible, wear a grounded wrist strap when you are working inside the computer case. Alternatively, discharge any static electricity by touching the bare metal chassis of the unit case, or the bare metal body of any other grounded appliance.
- Hold electronic circuit boards by the edges only. Do not touch the components on the board unless it is necessary to do so. Don't flex or stress the circuit board.
- Leave all components inside the static-proof packaging that they shipped with until they are ready for installation.
- Use correct screws and do not over tighten screws.

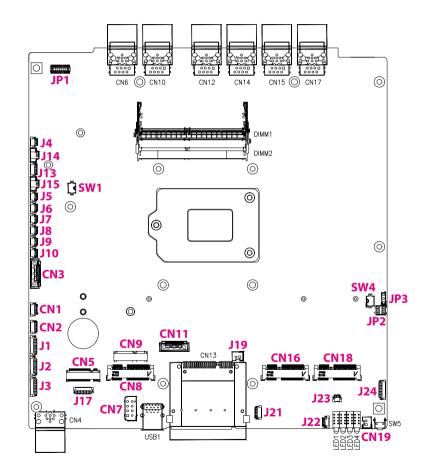


Jumper Settings


A jumper is the simplest kind of electric switch. It consists of two metal pins and a cap. When setting the jumpers, ensure that the jumper caps are placed on the correct pins. When the jumper cap is placed on both pins, the jumper is short. If you remove the jumper cap, or place the jumper cap on just one pin, the jumper is open.

Refer to the illustrations below for examples of what the 2-pin and 3-pin jumpers look like when they are short (on) and open (off).

Two-Pin Jumpers: Open (Left) and Short (Right)


Three-Pin Jumpers: Pins 1 and 2 are Short

VTC 7252-7C4IP Connector Specification & Jumper Setting

The figure below is the carrier board used in the VTC 7252-7C4IP system. It shows the locations of the jumpers and connectors.

Jumper and DIP Switch Settings

RTC Clear Selection

Connector location: SW1

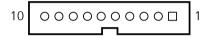
Input Voltage Control Selection

Connector location: SW4

Γ.	0	Ζ	
	_	-	
		ш	
Ι'	1	2	

SW	RTC (Pin1)	SRTC/ME (Pin2)
OFF	Normal	Normal
ON	Clear CMOS	Clear ME

POWERSW (Pin1)	12V24V (Pin2)	Result
OFF	OFF	12VDC
OFF	ON	24VDC
ON	ON	9~36VDC (Default)


Internal Connectors

COM1 RS232 Connector

Connector size: $1 \times 10 = 10$ -pin header Connector location: J3

COM2 RS232 Connector

Connector size: $1 \times 10 = 10$ -pin header Connector location: J2

Pin	Definition	Pin	Definition
1	GND	2	GND
3	SP_CTS1	4	SP_DSR1
5	SP_DTR1	6	SP_RXD1
7	SP_RI1	8	SP_RTS1
9	SP_TXD1	10	SP_DCD1

Pin	Definition	Pin	Definition
1	GND	2	GND
3	SP_CTS2	4	SP_DSR2
5	SP_DTR2	6	SP_RXD2
7	SP_RI2	8	SP_RTS2
9	SP_TXD2	10	SP_DCD2

10

COM3 RS232/RS422/RS485 Connector

Connector size: $1 \times 10 = 10$ -pin header Connector location: J1

DIO Connector

Connector size: $1 \times 10 = 10$ -pin header Connector location: J24

Pin	Definition	Pin	Definition
1	GND	2	GND
3	CM3_CTS#	4	CM3_DSR#
5	CM3_DTR#_RX-	6	CM3_RX_TX+
7	CM3_RI#_PW	8	CM3_RTS#
9	CM3_TX_RX+	10	CM3_DCD#_TX-

Pin	Definition	Pin	Definition
1	GND	2	GND
3	DO4	4	DO3
5	DO2	6	DO1
7	DI4	8	DI3
9	DI2	10	DI1

Audio Phone Jack

- -

Connector size: $1 \times 6 = 6$ -pin header Connector location: CN1 and CN2

HDMI Connector

Connector size: $2 \times 10 = 20$ -pin header Connector location: JP1

Pin	Definition	Pin	Definition
1	Front_out_L / Surr_out_L	2	Front_out_JD / Surr_out_JD
3	Front_out_R / Surr_out_R	4	MIC_L / MIC_R
5	MIC_JD	6	AGND

Pin	Definition	Pin	Definition
1	HDMI_GND	2	HDMI_HPD
3	HDMI_P5V	4	GND
5	HDMI_SDA	6	HDMI_SCL
7	NC	8	NC
9	HDMI_CLK_N	10	GND
11	HDMI_CLK_P	12	HDMI_TX0N
13	GND	14	HDMI_TX0P
15	HDMI_TX1N	16	GND
17	HDMI_TX1P	18	HDMI_TX2N
19	GND	20	HDMI_TX2P

SATA Connector 1

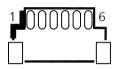
Connector size: 1 x 7 = 7-pin header Connector location: CN3

SATA Connector 2

Connector size: $1 \times 7 = 7$ -pin header Connector location: CN11

Pin	Definition	Pin	Definition
1	GND	2	SATA-TXP0
3	SATA-TXN0	4	SATA_PCIE_DETP0
5	SATA-RXN0	6	SATA-RXP0
7	GND		

Pin	Definition	Pin	Definition
1	GND	2	SATA-TXP1
3	SATA-TXN1	4	SATA_PCIE_DETP1
5	SATA-RXN1	6	SATA-RXP1
7	GND		



GPS Wire to Board Connector

Connector size: $1 \times 6 = 6$ -pin header Connector location: J13

GPS Wire to Board Connector (DR to GPS Module)

Connector size: $1 \times 4 = 4$ -pin header Connector location: J4

Pin	Definition	Pin	Definition
1	3.3V_BAT	2	NC
3	TX	4	RX
5	GND	6	3.3V

Pin	Definition	Pin	Definition
1	GND	2	NC
3	ODOMETER	4	DIRECTION

GPS Battery Connector

Connector size: 1 x 2 = 2-pin header Connector location: J14

GPS Wire to Board Connector (DR IN)

Connector size: $1 \times 3 = 3$ -pin header Connector location: J23

100	2

Pin	Definition	Pin	Definition
1	ODOMETER	2	DIRECTION
3	GND		

Pin	Definition	
1	GND	
2	VBAT	

RTC Battery Connector

Connector size: 1 x 2 = 2-pin header Connector location: J15

Debug 80 Port Connector

Connector size: $1 \times 10 = 10$ -pin header Connector location: J17

Pin	Definition
1	GND
2	VBAT

10	0000000000	1

Pin	Definition	Pin	Definition
1	GND	2	PLTRST#
3	LPC_CLK	4	LPC_FRAME#
5	LPC_AD3	6	LPC_AD2
7	LPC_AD1	8	LPC_AD0
9	LPC_SERIRQ	10	VCC3

USB Connectors

Connector size: 1 x 4 = 4-pin header Connector location: J5, J6, J7, J8, J9 and J10

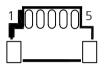
MCU Debug Port

Connector size: $1 \times 3 = 3$ -pin header Connector location: JP3

Pin	Definition	Pin	Definition
1	GND	2	USB_P
3	USB_N	4	POWER

Pin	Definition
1	TX
2	RX
3	GND

 $\begin{array}{c|c}
1 & \bigcirc & \bigcirc & \bigcirc & 7\\
2 & \bigcirc & \bigcirc & \bigcirc & 8
\end{array}$



MCU Download Port

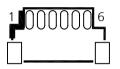
Connector size: 2 x 4 = 8-pin header Connector location: JP2

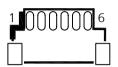
Dual CAN Connector

Connector size: $1 \times 4 = 4$ -pin header Connector location: J22

Pin	Definition	Pin	Definition
1	3.3V	2	MCU_RST
3	MCU_TRST	4	MCU_TDI
5	MCU_TCK	6	MCU_TMS
7	MCU_TDO	8	GND

Pin	Definition	Pin	Definition
1	CAN2_H	2	CAN2_L
3	GND	4	CAN1_H
5	CAN1_L		




CAN1 Download Connector

Connector size: $1 \times 6 = 6$ -pin header Connector location: J21

CAN2 Download Connector

Connector size: $1 \times 6 = 6$ -pin header Connector location: J20

Pin	Definition	Pin	Definition
1	VCC3	2	GND
3	ТСК	4	TDO
5	TDI	6	TMS

Pin	Definition	Pin	Definition
1	VCC3	2	GND
3	ТСК	4	TDO
5	TDI	6	TMS

V2X Power Connector

Connector size: 1 x 2 = 2-pin header Connector location: J19

Definition

5VDC

GND

DC Out Connector

Connector size: $2 \times 4 = 8$ -pin header Connector location: CN7

2	0	1
l		1

Pin

1

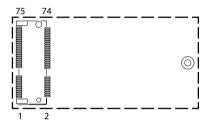
-

8		0	0	0	0	5
4	6	0	0	0	□ c	1

Pin	Definition	Pin	Definition
1	12VDC	2	PUSH_BTN_PWRIN
3	EXT_RX	4	EXT_TX
5	GND	6	GND
7	PUSH_BT_SLEEPIN	8	PUSH_BTN_RSTIN

Power Button Connector

Connector size: $1 \times 2 = 2$ -pin header Connector location: CN19

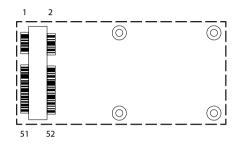


Pin	Definition	
1	HW_BT#	
2	GND	

M.2 Key E Socket with USB 2.0 + 2 x PCle 3.0 (For Wi-Fi/BT)

Connector location: CN9

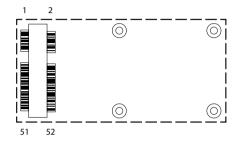
Pin	Definition	Pin Definition	
1	GND	2	+V3.3A
3	USB_D+	4	GND
5	USB_D-	6	M2E_LED1#
7	GND	8	NC
9	NC	10	NC
11	NC	12	NC
13	NC	14	NC
15	NC	16	M2E_LED2#
17	NC	18	GND
19	NC	20	NC
21	NC	22	NC
23	NC	32	NC
33	GND	34	NC
35	PCIE0_TXP	36	NC
37	PCIE0_TXN	38	TPU_SYS_RSTN_EN
39	GND	40	PMIC0_EN_M2_OD_3P3
41	PCIE0_RXP	42	PMIC1_EN_M2_OD_3P3


Pin	Definition	Pin	Definition
43	PCIE0_RTXN	44	NC
45	GND	46	NC
47	PCIE0_REFCLKP	48	NC
49	PCIE0_REFCLKN	50	M2E_SUSCLK (NC_BOM Option)
51	GND	52	PERSTO#_M2_3P3
53	CLKREQ0#_M2_3P3	54	M2E_DISABLE2#
55	GND	56	M2E_DISABLE1#
57	GND	58	NC
59	PCIE1_TXP	60	NC
61	PCIE1_TXN	62	I2C_ALERT#_M2_3P3
63	GND	64	NC
65	PCIE1_RXP	66	PERST1#_M2_3P3
67	PCIE1_RXN	68	CLKREQ#_M2_3P3
69	GND	70	NC
71	PCIE1_REFCLKP	72	+V3.3A
73	PCIE1_REFCLKN	74	+V3.3A
75	GND		

(BOM Optional)

Full-size Mini-PCle Socket with USB 2.0 + PCle 3.0 (For Wi-Fi/BT)

Connector location: CN8


Pin	Definition	Pin	Definition		Pin	Definition	Pin	Definition
1	RI (NC)	2	+V3.3A		27	GND	28	+V1.5S
3	NC	4	GND		29	GND	30	NC
5	NC	6	+V1.55		31	PCIE_TXN	32	NC
7	PCIE_CLKREQ#	8	NC		33	PCIE_TXP	34	GND
9	GND	10	NC		35	GND	36	USB_D-
11	PCIE_CLKN	12	NC		37	GND	38	USB_D+
13	PCIE_CLKP	14	NC		39	+V3.3A	40	GND
15	GND	16	GND		41	+V3.3A	42	NC
17	NC	18	GND	1	43	NC	44	NC
19	NC	20	MINIPCIE2_DIS#	1	45	NC	46	NC
21	GND	22	P2_RST#		47	NC	48	+V1.5S
23	PCIE_RXN	24	+V3.3A		49	NC	50	GND
25	PCIE_RXP	26	GND		51	NC	52	+V3.3A

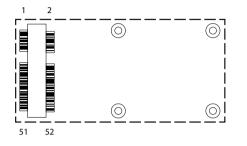
.

Full-size Mini-PCIe Socket with USB 2.0 + PCIe 3.0/SATA 3.0 (For Wi-Fi/BT/mSATA/C-V2X/DSRC)

Connector location: CN16/CN18

0

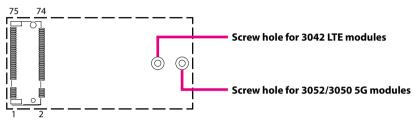
Please be noted that you have to select the mSATA setting in the BIOS setup menu for CN18.


Pin	Definition	Pin	Definition
1	NC	2	+V3.3A
3	NC	4	GND
5	NC	6	+V1.5S
7	PCIE_CLKREQ#	8	NC
9	GND	10	NC
11	PCIE_CLKN	12	NC
13	PCIE_CLKP	14	NC
15	GND	16	NC
17	NC	18	GND
19	NC	20	MINIPCIE2_DIS#
21	GND	22	P2_RST#
23	PCIE_RXN	24	+V3.3A
25	PCIE_RXP	26	GND

Pin	Definition	Pin	Definition
27	GND	28	+V1.5S
29	GND	30	NC
31	PCIE_TXN	32	NC
33	PCIE_TXP	34	GND
35	GND	36	USB_D-
37	GND	38	USB_D+
39	+V3.3A	40	GND
41	+V3.3A	42	NC
43	NC	44	NC
45	NC	46	NC
47	NC	48	+V1.5S
49	NC	50	GND
51	MSATA_DET#	52	+V3.3A

Full-size Mini-PCle Socket with USB 2.0 + PCle 3.0/SATA 3.0 (For Wi-Fi/BT/mSATA)

Connector location: CN18


Pin	Definition	Pin	Definition
1	NC	2	+V3.3A
3	NC	4	GND
5	NC	6	+V1.5S
7	PCIE_CLKREQ#	8	NC
9	GND	10	NC
11	PCIE_CLKN	12	NC
13	PCIE_CLKP	14	NC
15	GND	16	NC
17	NC	18	GND
19	NC	20	MINIPCIE2_DIS#
21	GND	22	P2_RST#
23	PCIE_RXN	24	+V3.3A
25	PCIE_RXP	26	GND

Pin	Definition	Pin	Definition
27	GND	28	+V1.5S
29	GND	30	NC
31	PCIE_TXN	32	NC
33	PCIE_TXP	34	GND
35	GND	36	USB_D-
37	GND	38	USB_D+
39	+V3.3A	40	GND
41	+V3.3A	42	NC
43	NC	44	NC
45	NC	46	NC
47	NC	48	+V1.5S
49	NC	50	GND
51	MSATA_DET#	52	+V3.3A

M.2 3042/3050/3052 Key B Socket with USB 2.0 + USB 3.2 Gen 2×1 (For LTE/5G NR)

Connector location: CN5 SIM socket: SIM 1-1 SIM socket: SIM 1-2

Pin	Definition	Pin	Definition
1	M2A_CONFIG3	2	+V3.3A
3	GND	4	+V3.3A
5	GND	6	M2B1_POWER_OFF#
7	USB_P	8	M2A_W1_DIS#
9	USB_N	10	WWAN1_LED#
11	NC	20	WWAN1_BUS_SEL
21	M2A_CONFIG0	22	VUSB_DET
23	SMS1_RI_3.5G	24	EM9190_P1
25	NC	26	M2A_W2_DIS#
27	GND	28	PLA_S2#
29	USB3_RXN	30	UIM1_RST
31	USB3_RXP	32	UIM1_CLK
33	GND	34	UIM1_DAT
35	USB3_TXN	36	UIM1_PWR
37	USB3_TXP	38	EM9190_P2
39	GND	40	SIM2_DETECT
41	PCIE_RXN	42	UIM2_DAT
41	(NC_BOM Option)	42	(NC_BOM Option)

Pin	Definition	Pin	Definition
43	PCIE_RXP (NC_BOM Option)	44	UIM2_CLK (NC_BOM Option)
45	GND	46	UIM2_RST (NC_BOM Option)
47	PCIE _TXN (NC_BOM Option)	48	UIM2_PWR (NC_BOM Option)
49	PCIE _TXP (NC_BOM Option)	50	W1_PERST# (NC_BOM Option)
51	GND	52	PCIE_CLKREQ# (NC_BOM Option)
53	PCIE_CLKN (NC_BOM Option)	54	M2A_PEWAKE#
55	PCIE_CLKP (NC_BOM Option)	56	M2B1_SM1_D
57	GND	58	M2B1_SM1_C
59	NC	60	NC
61	NC	62	NC
63	NC	64	NC
65	NC	66	SIM1_DETECT
67	P1_3.5G_RST#	68	M2A_SUSCLK
69	M2A_CONFIG1	70	+V3.3A
71	GND	72	+V3.3A
73	GND	74	+V3.3A
75	M2A_CONFIG2		

NE(COM

CHAPTER 4: SYSTEM SETUP

Removing the Chassis Cover

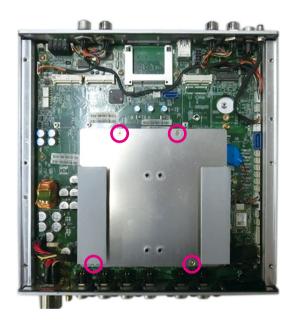
Prior to removing the chassis cover, make sure the unit's power is off and disconnected from the power sources to prevent electric shock or system damage.

1. Remove the screws on the front panel.

2. Remove the screws on the rear panel.

.

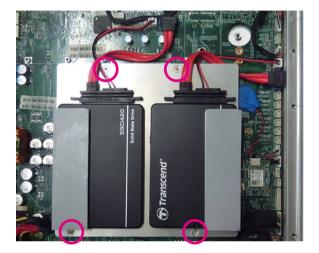
3. Remove the mounting bracket screws on the bottom of the enclosure.


4. After removing the brackets, loosen the screws on the bottom then remove the chassis top cover.



Installing a Storage Drive

1. With the chassis top cover removed, remove the screws on the storage bracket.



2. Align the mounting holes on the storage drives to the mounting holes on the bracket, then turn to the bottom side of the bracket and use the provided screws to secure the storage drives in place.

3. Connect the SATA cables and power cables. Then reinstall the storage bracket onto the mainboard using the screws removed earlier.

Installing a WWAN Module (M.2)

For LTE Module, 3042:

1. Locate the WWAN M.2 slot (CN5). Insert the module into the M.2 slot at a 45 degrees angle until the gold-plated connector on the edge of the module completely disappears inside the slot. Then fasten a screw into the mounting hole to secure the module.

For 5G NR Module, 3050/3052:

1. Locate the WWAN M.2 slot (CN5). Insert the module into the M.2 slot at a 45 degrees angle until the gold-plated connector on the edge of the module completely disappears inside the slot. Then fasten a screw into the mounting hole to secure the module.

Installing a Wi-Fi Module (M.2)

1. Locate the WWAN M.2 slot (CN9). Insert the Wi-Fi module into the M.2 slot at a 45 degrees angle until the gold-plated connector on the edge of the module completely disappears inside the slot. Then fasten a screw into the mounting hole to secure the module.

Installing a Wi-Fi/mSATA Module (Mini-PCIe)

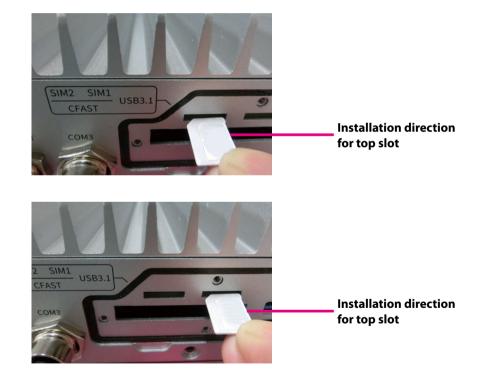
1. Locate the mini PCI Express slot (CN16 and CN18). Insert the Wi-Fi/mSATA module into the mini PCI Express slot at a 45 degrees angle until the gold-plated connector on the edge of the module completely disappears inside the slot. Then fasten a screw into the mounting hole to secure the module.

mSATA Module

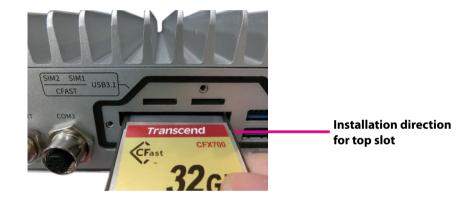
Wi-Fi Module

Please be noted that you have to select the mSATA setting in the BIOS setup menu for CN18.

Installing a SO-DIMM Memory Module

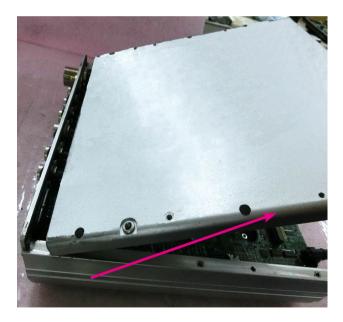

1. Push the ejector tabs which are at the ends of the socket outward. Then insert the module into the socket at an approximately 30 degrees angle. Apply firm even pressure to each end of the module until it slips down into the socket. The contact fingers on the edge of the module will almost completely disappear inside the socket.

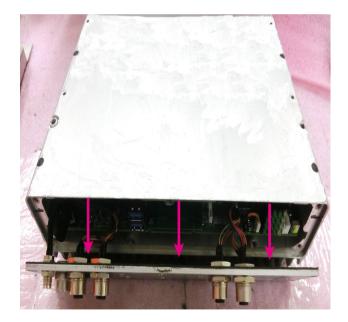
Inserting SIM Cards


1. Remove the SIM/CFast card cover on the front panel and insert the SIM cards. Please take note of the Micro SIM card installation direction as printed on the chassis.

Inserting a CFast Card

1. Remove the SIM/CFast card cover on the front panel and insert the CFast card. Please take note of the CFast card installation direction as printed on the chassis.



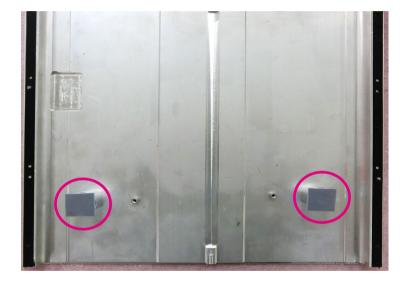


Installing Heatsink for LTE/5G and mSATA Modules

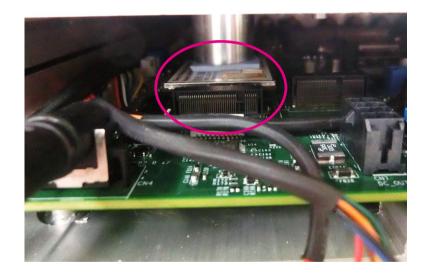
If LTE/5G or mSATA module is used, use heatsink and thermal pad in the accessory package for heat dissipation.

- 1. In order to protect the water seal strip on the rear panel, make the bottom cover slop upwards from the chassis before opening the bottom cover.
- 2. Before adding heatsink for LTE/5G or mSATA module, remove the screws on the front panel.

3. If using LTE/5G or mSATA module, fix the heatsink by using screws.



4. If LTE/5G and mSATA modules are used simultaneously, fix two heatsinks by using screws.



5. If LTE/5G and mSATA modules are used simultaneously, fix two heatsinks by using screws and attach thermal pads on the top of the heatsinks.


6. Make sure the thermal pad is attached on the module firmly.

.

- 7. In order to protect the water seal strip on the rear panel, make sure the bottom cover slopes downward of the chassis before closing the bottom cover.
- 8. Fasten the screws on the front panel.

APPENDIX A: SOFTWARE DEMO UTILITY FOR I/O PORTS OF FUNCTION CONTROL

NEXCOM's software demo utility enables users to test and control different I/O port functions on VTC 7252. This section shows how to use the utility. There are also source code files of the utility in the CD. Users can refer to the source codes to develop their applications.

Menu Screen

1. System 1

	Module PoE Event	
System Information		
BIOS	Version : V1.30 MCU Version : ? Ignition :	?
	Input Voltage : Prequency-In : PHz	
Power Type		
i oner rype		
	Power Type : ? Get	
Low Battery Voltage Prote	ection (BIOS setup support)	
Low Battery Voltage Prote	12V / 24V 12V / 24V	
	12V / 24V 12V / 24V Startup/Shutdown Startup/Shutdown Startup/Shutdown	Set
Low Battery Voltage Prote Voltage Level :	12V / 24V 12V / 24V	Set
	12V / 24V 12V / 24V Startup/Shutdown Startup/Shutdown Startup/Shutdown	Set

1.1 System Information

Displays basic information of the system.

- BIOS Version: Shows the BIOS version.
- MCU Version: Shows the MCU version.
- Ignition: Shows the status of ignition.
 - ON: Signal of ignition is high.
 - OFF: Signal of ignition is low.
- Input Voltage: Shows the voltage level of power-in.
- Frequency-In: Shows the voltage frequency.

System Information						
BIOS Version :	V1.30	MCU Version :	?	Ignition :	?	
	Input Voltage :	?	Frequency-In :	? Hz		

1.2 Power Type

Shows the DIP switch setting of input voltage.

- If the setting is 12V: 12V is shown.
- If the setting is 24V: 24V is shown.
- If the setting is 9V~36V: 9V~36V is shown.

-Power Type			
	Power Type : ?	Get	

1.3 Low Battery Voltage Protection

Sets the Low Battery Voltage Protection Startup/Shutdown voltage level during 12V/24V.

Low Battery Voltage Prot	ection (BIOS setu	ip suppor	-t)				
	12V	1	24V	12V	1	24V	
	Startup/Shutdo	wn Start	up/Shutdown	Startup/Shutdow	n Star	rtup/Shutdown	Set
Voltage Level :		?		11.5V / 10.5V	23	.0V/21.0V 💌	

2. System 2

ystem 1 System 2 I/O Module P	DE Event
Power On/Off Delay Timer (BIOS setup s	upport)
Power Off Delay : ?	Disable Delay Off Time : ? 20 Sec
Fower on Delay .]	Set
Power On Delay : ?	Disable 💌 Delay On Time : ? 10 Sec 💌
	Wake Up : ? Disable Set 0 Min : ? 0 Sec : ? 0 Set
RTC Timer Setting : Hour : 7	
Timer Setting : Hour : 2	
Timer Setting : Hour : 2	0 V Min: 7 0 V Sec: 7 0 V Set

2.1 Power On/Off Delay Timer

Enables or disables the delay time function. There are several selections of delay time.

Power On/Off Delay Time	r (BIOS setup	support) —						
Power Off Delay :	?	Disable	•	Delay Off Time :	?	20 Sec	•	Set
Power On Delay :	?	Disable	•	Delay On Time :	?	10 Sec	•	

2.2 RTC Wake Up Timer

Enables or disables the system wake up function. Once this function is enabled, the timer setting of wake up can be configured.

	RTC Wake Up :	?	Disable 👻	Set		
Timer Setting :	Hour : ? 0 💌	Min : ?	0 -	Sec: [? 0	-	Set

2.3 Watchdog Timer

Enables or disables the WDT function. There are several selections of time. The timer of WDT can also be cleared by the Set WDT button.

Watchdog Timer				
	WDT : ?	Disable	•	Set WDT
	Time interval : ?	3	•	Set time interval

3. I/O

- -

stem 1 System	2 1/0	Module PoE	Event				
GPO Pull-Up Mod	de			GPI Active Mode			
GPO 12 PullUp :	?	Internal 💌	Set	GPI12 Active :	?	High	•
GPO34 PullUp :	?	Internal 💌	Set	GPI34 Active :	?	High	▼ Set
GPO				GPI			
GPO1:	?	High 💌		GPI1:	?		
GPO2 :	?	High 💌	1	GPI2 :	?	_	
GPO3:	?	High 💌	Set		?	_	
GPO4:	?	High 💌		GPI4:	?		
Wake On LAN (E	IOS setup	support)		Programmable LED			
Wake On Lan :	?	Disable 💌	Set	Programmable LED1:	?	LED OFF	
External 12V				Programmable LED2 :	2	LED OFF	Set
External 12V :	?	Enable 💌	Set		J	1	

3.1 GPO Pull-Up Mode

Configures the GPO pull-up mode as internal or external.

- GPO Pull-Up Mod	le		
GPO 12 PullUp :	?	Internal 💌	Set
GPO34 PullUp :	?	Internal 💌	

3.2 GPO

Configures GPO as high voltage level or low voltage level.

3.3 GPI Active Mode

Reads the status (High or Low) of GPI active mode.

GPI Active Mode			
GPI12 Active :	?	High 👻	Set
GPI34 Active :	?	High 💌	

3.4 GPI

- -

Reads the status (input voltage level) of GPI.

GPI	
GPI1:	?
GPI2:	?
GPI3:	?
GPI4:	?

3.5 Wake on LAN

Enables or disables the Wake On LAN function on LAN (Intel i219).

Wake On LAN (B	IOS setup sup	port)		
Wake On Lan :	?	Disable	•	Set

3.6 External 12V DC

Enables or disables the external 12V function.

External 12V				
External 12V :	?	Enable	•	Set

3.7 Programmable LED

Defines the programmable LEDs as ON or OFF.

-Programmable LED			
Programmable LED1:	?		Set
Programmable LED2 :	?	LED OFF 💌	

4. Module

ystem 1 System 2 I/O Module PoE Event	
WWAN (BIOS setup support) WWAN 1: P Enable WWAN 1: P Enable Set Set	WiFi WiFi (CN18) : ? Enable WiFi (CN8) : ? Enable WiFi (CN16) : ? Enable
-SIM Card	Bluetooth BT (CN18) : ? Enable V Set
WWAN 1: ? SIM Card 1 🗨 Set	GPS: ? Enable Set

4.1 WWAN

Enables or disables the WWAN1 function. Enables or disables the WWAN1 wakeup function. The setting can also be cleared by the Set button.

– WWAN (BIOS setup support) —		
WWAN 1: ? WWAN Wakeup 1: ?	Enable 💌 Disable 💌	Set

4.2 SIM Cards

Selects whether the SIM card setting on WWAN is from SIM card 1 or SIM card 2. The setting can also be cleared by the Set button.

- SIM Card		
WWAN 1: ?	SIM Card 1	Set

4.3 WiFi

Enables or disables the Wi-Fi module function on the CN18 mini PCIe socket. Enables or disables the Wi-Fi module function on the CN8 mini PCIe socket. Enables or disables the Wi-Fi module function on the CN16 mini PCIe socket. The setting can also be cleared by the Set button.

WiFi		
WiFi (CN18) : ?	Enable 💌	
WiFi (CN8) : ?	Enable 💌	Set
WiFi (CN16) : ?	Enable 💌	

4.4 Bluetooth

Enables or disables the BT function on the CN18 mini PCIe socket. The setting can also be cleared by the Set button.

Bluetooth					٦
BT (CN18) :	?	Enable	•	Set	

4.5 GPS

Enables or disables the GPS function.

GPS						
	GPS :	?	Enable	•	Set	

4.6 Mini PCle Type

Selects the slot type (SATA/USB/PCIe) on the CN18 mini PCIe socket.

Mini PCIe Type (Setup in	BIOS)	
PCIe (CN18) :	?	

5. PoE

The PoE menu tab displays the status (Power on or Power off) of the PoE ports and other PoE related information.

Output (Wat	t) Link Status	Power			
Port 1: ?	?	?	Power On	Power Off	
Port 2 : ?	?	?	Power On	Power Off	
Port 3 : ?	?	?	Power On	Power Off	
Port 4 : ?	?	?	Power On	Power Off	
	Total Output (W): 2			

- 1. Press the Power On button or Power Off button to turn on or turn off PoE power ouput.
- 2. Show the power output (watt) of each PoE port and total power output.

6. Event

VIC/232 (Utility			
System 1	System 2 I/O	Module PoE	Event	
System eve 1. Over vol 2. Lower vo	nt type : tage jitage			

The Event menu tab shows the events of VTC 7252.

- 1. Over voltage alarm
- 2. Lower voltage alarm

7. CAN Utility

adrate 250 kbps 🗸 Listen Mode Active 🗨 Self Test Mode Normal 💌	Start CAN BUS	Other Info Total Send :
Iter ID (11bit) RTR (0 or 1) Data 1 (8bit) Data 2 (8bit) Iter mode Single - ACR 0 0 00 00	Stop CAN BUS	0 Total Send (Error)
Domode Standard AMR 7FF 1 FF FF	Get Error code	0 Total Receive :
ie Standard ▼ id 7FF dic 8 ▼ rtr 0 ▼ lata 19 2A 3B 4C 5D 6E 7F 80 Send 10 10 10 10 10 10 10	Show msg Auto Send	Clear

7.1 CAN Speed

Press the Set button to set up the CAN Speed.

7.2 Listen Mode

There are Normal Mode and Listen Mode. In Listen Mode, CAN controller would give no acknowledge to the CAN-bus.

7.3 Self Test Mode

In Self Test Mode, a full node test is possible without any other active node on the bus.

7.4 Filter

.

In single filter configuration, receiving standard or extended frame messages.

Filter			I	ID (11bit)	RTR (0 or 1	l) Data 1 (8bit)	Data 2 (8bit)
Filter mode	Single	~	ACR	0	0	00	00
ID mode	Standard	•	AMR	7FF	1	FF	FF

7.5 CAN message

Click the drop-down list to set up Message then press the Send button to send those CAN information.

CAN message	
ide Standard 💌 id 7FF dlc 8 💌 rtr 0 💌	Grad
Data 19 2A 38 4C 5D 6E 7F 80	Send

7.6 Auto Send Message

Set the time interval in the textbox and press the Auto Send button to send Message automatically or you can press Stop CAN BUS to stop the operation.

- Auto Send N	lessa	age			
1000	ms				
Auto Send					

7.7 Other Info

Shows the statistics of sent messages. Shows the statistics of the sent error messages. Shows the statistics of received messages.

Other Info	1
Total Send :	
0	
Total Send (Error) :	
0	
, Total Receive :	
0	
Clear	

8. G-Sensor

vic/	252 0	o-Sens	sor Utility	/					
	romete It data		6.66 kHz	.	Full-scale :	±2 g	•	Set	
	x :			Y:		Z:			
Gyroso	cope								
Outpu	t data	rate :	6.66 kHz	•	Full-scale :	245 dps	•	Set	
	x :			Y:		Z:			
Reg In	dex (H	lex) :	OF	Data (H	lex) : 00 Refresh	R	ead	Writ	e
	idex (H		OF	Data (H	Refresh	scription	ead	Writ	e
			OF		Refresh		ead	Writ	e
Num			OF		Refresh		ead	Writ	e

8.1 Accelerometer

Acceleration range and linear acceleration output data rate can be selected by pressing the Set button.

X-Axis data, Y-Axis data and Z-Axis data can be retrieved by pressing the Set button.

Output data rate	: 6.66 kHz	•	Full-scale :	±2 g	-	Set
				-	6	
X :		Y :		7.		
Χ:		r :		Z :		

8.2 Gyroscope

Acceleration range and angular rate range can be selected by pressing the Set button.

X-Axis data, Y-Axis data and Z-Axis data can be get by pressing the Set button.

Gyroscope				
Output data rate :	6.66 kHz 🔹	Full-scale :	245 dps 👻	Set
x :	Y:		Z:	

8.3 Sensor Register Index

Selects the registers inside the sensor to read or write the data.

Reg Index (Hex): 0F Data (Hex): 00 Read Write

8.4 Register Table

Shows the value of all registers in the sensor, once the Refresh button is pressed.

Refresh					
Num	Name	Туре	Value	Description	
		m			

APPENDIX B: GNSS FEATURE

uBlox-NEO M8 Overview

The NEO-M8 series of standalone concurrent GNSS modules is built on the exceptional performance of the u-blox M8 GNSS (GPS, GLONASS, Galileo, BeiDou, QZSS and SBAS) engine in the industry proven NEO form factor.

The NEO-M8 series provides high sensitivity and minimal acquisition times while maintaining low system power. The NEO-M8M is optimized for cost sensitive applications, while NEO-M8N and NEO-M8Q provide best performance and easier RF integration. The NEO form factor allows easy migration from previous NEO generations. Sophisticated RF-architecture and interference suppression ensure maximum performance even in GNSS-hostile environments.

The NEO-M8 combines a high level of robustness and integration capability with flexible connectivity options. The future-proof NEO-M8N includes an internal Flash that allows simple firmware upgrades for supporting additional GNSS systems. This makes NEO-M8 perfectly suited to industrial and automotive applications.

The DDC (I²C compliant) interface provides connectivity and enables synergies with most u-blox cellular modules. For RF optimization the NEO-M8N/Q features an additional front-end LNA for easier antenna integration and a front-end SAW filter for increased jamming immunity.

u-blox M8 modules use GNSS chips qualified according to AEC-Q100, are manufactured in ISO/TS 16949 certified sites, and fully tested on a system level. Qualification tests are performed as stipulated in the ISO16750 standard: "Road vehicles – Environmental conditions and testing for electrical and electronic equipment".

Technical Specifications

Features

Receiver type	72-channel u-blox M8 engine GPS/QZSS L1 C/A, GLONASS L10F, BeiDou B1 SBAS L1 C/A: WAAS, EGNOS, MSAS Galileo-ready E1B/C (NEO-M8N)			
Nav. update rate ¹	Single GNSS: up to 1	8 Hz		
	Concurrent GNSS: up	o to 10 Hz		
Position accuracy	2.0 m CEP			
		NEO-M8N/Q	NEO-M8M	
Acquisition	Cold starts: Aided starts: Reacquisition:	26 s 2 s 1 s	27 s 4 s 1 s	
Sensitivity	Tracking & Nav: Cold starts: Hot starts:	–167 dBm –148 dBm –156 dBm		
Assistance	AssistNow GNSS Online AssistNow GNSS Offline (up to 35 days) AssistNow Autonomous (up to 6 days) OMA SUPL & 3GPP compliant			
Oscillator	TCXO (NEO-M8N/Q), Crystal (NEO-M8M)			
RTC crystal	Built-in			
Noise figure	On-chip LNA (NEO-N lowest noise figure (N		or	

NEXCOM

Features cont.

Anti jamming	Active CW detection and removal. Extra onboard SAW band pass filter (NEO-M8N/Q)
Memory	ROM (NEO-M8M/Q) or Flash (NEO-M8N)
Supported antennas	Active and passive
Odometer	Travelled distance
Data-logger	For position, velocity, and time (NEO-M8N)
15 150 100 100	

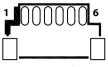
¹ For NEO-M8M/Q

Digital I/O

Timepulse

Protocols

Electrical data


Supply voltage	1.65 V to 3.6 V (NEO-M8M)
	2.7 V to 3.6 V (NEO-M8N/Q)
Power consumption ²	23 mA @ 3.0 V (continuous) 5 mA @ 3.0 V Power Save Mode (1 Hz, GPS only)
Backup Supply	1.4 to 3.6 V
² NEO-M8M	
Interfaces	
Serial interfaces	1 UART 1 USBV2.0 full speed 12 Mbit/s 1 SPI (optional) 1 DDC (I ² C compliant)

Configurable timepulse 1 EXTINT input for Wakeup

NMEA, UBX binary, RTCM

Configurable 0.25 Hz to 10 MHz

VIOB-GPS-02 Module Connector Pin Definitions

J2 (GPS Side)

J13 (PC Side)

J2 Pin Definition

Pin	Definition	Pin	Definition
1	3.3V	2	GPS LED
3	TX	4	RX
5	GND	6	3.3V

J13 Pin Definition

Pin	Definition	Pin	Definition
1	3.3V	2	GPS LED
3	TX	4	RX
5	GND	6	3.3V

COM Port for GNSS: COM 4 Baud Rate: 9600

APPENDIX C: GNSS WITH DEAD RECKONING FEATURE

uBlox-NEO M8L Overview

The NEO-M8L standalone concurrent GNSS module with 3D dead-reckoning (DR) is built on the exceptional performance of the u-blox M8 concurrent GNSS (GPS, GLONASS, Galileo-ready¹, BeiDou, QZSS and SBAS) engine in the compact and industry proven NEO form factor.

The NEO-M8L delivers a complete, self-contained solution for roadvehicle Automotive Dead Reckoning (ADR) applications in an exceptionally compact 16 x 12 mm form-factor. The module combines information from GNSS, on-board 3-Dimensional inertial sensors, and speed data from the vehicle to deliver continuous navigation in road-vehicle applications. Its size and features make it suitable for aftermarket and first-fit navigation and Telematics applications. Position measurement rates of up to 2 Hz are available with optional extrapolation (based on vehicle dynamics) extending reporting rates to 20 Hz. Inertial sensor measurements are available to external applications at rates up to 10 Hz.

For ease of application, both hardware and message interfaces are supported for vehicle speed. u-blox' ADR and GNSS technologies deliver continuous and accurate positioning throughout the journey. u-blox' tightly-coupled navigation solution delivers significant improvements in navigation accuracy, especially in difficult urban environments. Dead reckoning sensors in conjunction with speed information from the vehicle also provide navigation before GNSS signals are acquired and during periods of complete signal loss. The introduction of three dimensional sensing and signal processing (for both acceleration and direction) extend accurate navigation to urban multilevel highways and car-parks as well as extending dead-reckoned range in tunnels and urban canyons. 3D sensing also enables flexibility in orientation of the receiver with respect to the vehicle frame. The NEO form factor allows easy migration from previous NEO generations. Sophisticated RF architecture and interference suppression ensure maximum performance even in GNSS-hostile environments. The NEO-M8L module includes an internal Flash that allows simple firmware upgrades. These features make the NEO-M8L perfectly suited to industrial and automotive applications. UART, SPI and DDC (I²C compatible) interfaces provide connectivity and enable synergies with most u-blox cellular modules.

u-blox M8 modules use GNSS chips qualified according to AEC-Q100, and are manufactured in ISO/TS 16949 certified sites. Qualification tests are performed as stipulated in the ISO16750 standard: "Road vehicles - Environmental conditions and testing for electrical and electronic equipment".

u-blox' AssistNow Assistance services supply aiding information, such as ephemeris, almanac and time, reducing the time to first fix significantly and improving acquisition sensitivity. The u-blox M8 generation extends validities of AssistNow Offline data (up to 35 days) and AssistNow Autonomous data (up to 6 days), providing the benefits of faster acquisition for longer durations since last use.

¹ With future flash firmware update.

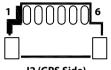
Technical Specifications

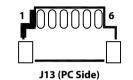
Parameter	Specificati	Specification			
Receiver type	72-channel u-blox M8 engine GPS L1C/A, SBAS L1C/A, QZSS L1C/A GLONASS L1OF, BeiDou B1, Galileo E1B/C²				
GNSS		GPS & GLONASS	GPS & BeiDou	GPS	
Time-To-First-Fix ³	Cold start	27 s	28 s	30 s	
	Hot start	1.5 s	1.5 s	1.5 s	
	Aided starts ⁴	4 s	6 s ⁵	3 s	
Sensitivity ⁶	Tracking & Navigation ⁷	-160 dBm	-160 dBm	-160 dBm	
	Reacquisition	-159 dBm	-159 dBm	-159 dBm	
	Cold start	-147 dBm	-147 dBm	-147 dBm	
	Hot start	-156 dBm	-156 dBm	-156 dBm	
Navigation		GPS & GLONASS	GPS & BeiDou	GPS	
Horizontal Position	Autonomous	2.5 m	2.5 m	2.5 m	
accuracy ⁸	SBAS	2.0 m	2.0 m	2.0 m	
Velocity accuracy ⁹		0.05 m/s	0.05 m/s	0.05 m/s	
Heading accuracy ⁹		0.3 degree	0.3 degree	0.3 degree	
ADR position error ¹⁰	Gyro + speed acceleromete		typ. 3 % of a travelled with		
Frequency of time pulse signal			0.25 Hz 10) MHz	
Maximum navigation rate (High Rate output) ¹¹			20 Hz		

Navigation		GPS & GLONASS	GPS & BeiDou	GPS
Maximum navigation rate (Measurement rate)			2 Hz	
Navigation latency ¹²			300 ms nomi	nal
Maximum sensor measurement message output rate			10 Hz	
Sensor measurement message output bandwidth ¹³			nominal 50% rate	of output
Accuracy of time pulse signal	RMS 99%	30 ns 60 ns	30 ns 60 ns	30 ns 60 ns
Operational limits	Dynamics Altitude Velocity		≤ 4G 50,000m 500 m/s	

 $^{\rm 2}\,$ Ready to support Galileo E1B/C when available with a flash firmware update

³ All signals at - 130 dBm


- ⁴ Dependent on aiding data connection speed and latency
- ⁵ BeiDou assisted acquisition is not available
- ⁶ Demonstrated with a good external LNA
- ⁷ Optimized for best navigation performance with dead-reckoning
- ⁸ GNSS fix available, CEP, 50%, 24 hours static, -130dBm, > 6 SVs
- ⁹ GNSS fix available, 50% @ 30 m/s
- ¹⁰ Typical road and vehicle conditions
- ¹¹ For update rates > 2 Hz, extrapolation techniques are applied.
- ¹² Dependent on signal conditions but measurements are delivered with time-stamp corresponding to measurement time
- ¹³ Higher bandwidths are used for navigation
- ¹⁴ Assuming Airborne < 4 g platform



J4 (PC Side)

4

VIOB-GPS-DR02/VTK-GPS-DR02 Module Connector Pin Definitions

J2 (GPS Side)

J2 Pin Definition

.

Pin	Definition	Pin	Definition
1	3.3V	2	GPS LED
3	TX	4	RX
5	GND	6	3.3V

J13 Pin Definition

Pin	Definition	Pin	Definition
1	3.3V	2	GPS LED
3	TX	4	RX
5	GND	6	3.3V

COM Port for GNSS: COM 4 Baud Rate: 9600

J3 Pin Definition

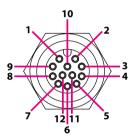
4

0000

J3 (GPS Side)

1

Pin	Definition	Pin	Definition
1	DR_DIRECTIO_M_R	2	DR_ODOMETER_M_R
3	1PPS_R	4	GND


J4 Pin Definition

Pin	Definition	Pin	Definition
1	GND	2	1PPS
3	DR_ODOMETER_M	4	DR_DIRECTIO_M

APPENDIX D: SIGNAL CONNECTION OF DI/DO

GPIO Pinout Description

Pin	Definition	Pin	Definition
1	DI1	2	DI2
3	DI3	4	DO1
5	DO2	6	DO3
7	GND	8	CAN1 L
9	CAN1 H	10	CAN2 L
11	CAN2 H	12	GND

Digital Input

The GPIO connector (DIO, connector number: 3) for GPI signal (digital signal input). The GPIO has 3 digital input channels by default.

Wet Contact (default)

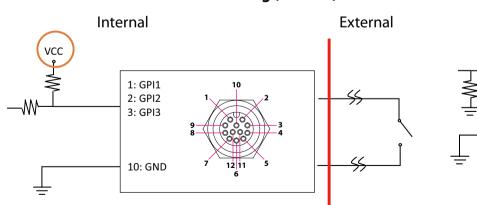
The "GPI Active" needs to set to "Low" in Software Demo Utility as shown below or SDK. The GPI signals have a pull up resistor to Vin Voltage internally.

GPI Active Mode			
GPI12 Active :	Low	Low 💌	I
GPI34 Active :	Low	Low	Get

Note: Example of GPI 1 and GPI 2 as a pair, and GPI 3 as a single.

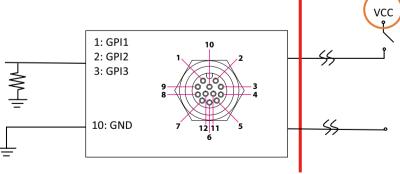
The figure below shows how to connect an external output source to one of the input channels.

Dry Contact:


The "GPI Active" needs to set to "High" in Software Demo Utility as shown below or SDK. The GPI signal will not have a pull up resistor internally.

Note: Example of GPI 1 and GPI 2 as a pair, and GPI 3 as a single.

The figure below shows how to connect an external source to one of the input channels.


External Sourcing

Internal Sourcing (Default)

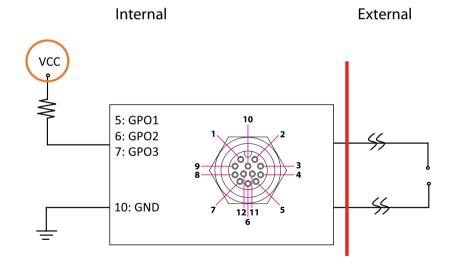
NE:COM

Digital Output

The GPIO (DIO, connector number: 3) connector for GPO signal (digital signal output). The GPIO connector has 3 digital output channels by default.

The signal connection of GPIO supports two connected methods for output signal type. The output signal has two states, one is low level (driven to 0V from GPO signal) other is open (high voltage is provided from external device).

Wet Contact (default)


The "GPO PullUp" needs to set to "Internal" in Software Demo Utility as shown below or SDK. The GPO signal will have a pull up resistor to Vin Voltage internally.

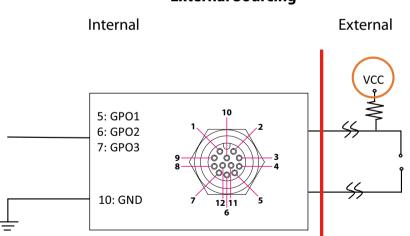
GPO Pull-Up Mod	le		
GPO 12 PullUp :	Internal	Internal 💌	Set
GPO34 PullUp:	Internal	Internal 💌	Jei

Note: Example of GPO 1 and GPO 2 as a pair, and GPO 3 as a single.

The figure below shows how to connect an external input source to one of the output channels.

Internal Sourcing (Default)

Dry Contact


، کو کا ک

The "GPO PullUp" needs to set to "External" in Software Demo Utility as shown below or SDK. The GPO signal will not have a pull up resistor internally.

GPO Pull-Up Mod	le		
GPO12 PullUp :	External	External 💌	Set
GPO34 PullUp :	External	External 💌	Set

Note: Example of GPO 1 and GPO 2 as a pair, and GPO 3 as a single.

The figure below shows how to connect an external input source to one of the output channels.

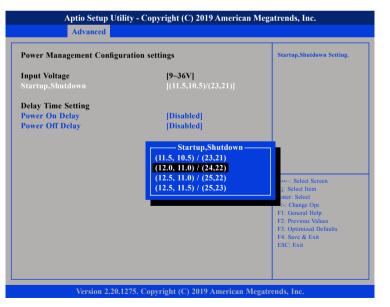
External Sourcing

APPENDIX E: VEHICLE POWER MANAGEMENT SETUP

Startup and Shutdown Voltage Setting

Set the startup voltage to 11.5V or 23V and the shutdown voltage to 10.5V or 21V $\,$

If the input voltage is 12V: the startup voltage to 11.5V and the shutdown voltage to 10.5V.


If the input voltage is 24V: the startup voltage to 23V and the shutdown voltage to 21V.

Set the startup voltage to 12.0V or 24V and the shutdown voltage to 11.0V or 22V $\,$

If the input voltage is 12V: the startup voltage to 12V and the shutdown voltage to 11V.

If the input voltage is 24V: the startup voltage to 24V and the shutdown voltage to 22V.

NEXCOM

Set the startup voltage to 12.5V or 25V and the shutdown voltage to 11.0V or 22V $\,$

If the input voltage is 12V: the startup voltage to 12.5V and the shutdown voltage to 11V.

If the input voltage is 24V: the startup voltage to 25V and the shutdown voltage to 22V.

Power Management Configuration settings		Startup,Shutdown Setting.
Input Voltage Startup,Shutdown	[9-36V] [(11.5,10.5)/(23,21)]	
Delay Time Setting		
Power On Delay	[Disabled]	
Power Off Delay	[Disabled]	
	<u>Startup,Shutdown</u> (11.5, 10.5) / (23.21) (12.0, 11.0) / (24,22) (12.5, 11.0) / (25.22) (12.5, 11.5) / (25,23)	+: Select Screen): Select Item nter: Select : Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit

Set the startup voltage to 12.5V or 25V and the shutdown voltage to 11.0V or 22V

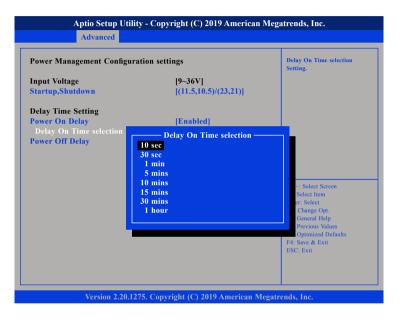
If the input voltage is 12V: the startup voltage to 12.5V and the shutdown voltage to 11.5V.

If the input voltage is 24V: the startup voltage to 25V and the shutdown voltage to 23V.

Power Management Configu	ration settings	Startup,Shutdown Setting.
i nput Voltage Startup,Shutdown	[9-36V] [(11.5,10.5)/(23,21)]	
Delay Time Setting Power On Delay Power Off Delay	[Disabled] [Disabled]	
	<u>Startup,Shutdown</u> (11.5, 10.5) / (23.21) (12.0, 11.0) / (24,22) (12.5, 11.0) / (25,22) (12.5, 11.5) / (25,23)	+: Select Screen 1: Select Item nter: Select 4: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit

Power-on Delay Setting

Disable Power-on Delay

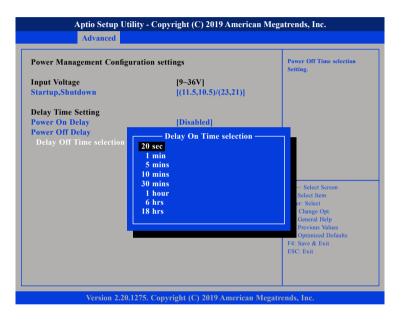


Enable Power-on Delay

Delay time can be set at 10 sec/30 sec/1 min./5 min./10 min./15 min./30 min./1 hour.

Power-off Delay Setting

Disable Power-off Delay



Enable Power-off Delay

Delay time can be set at 20 sec/1 min./5 min./10 min./30 min./1 hour/6 hour/18 hour.

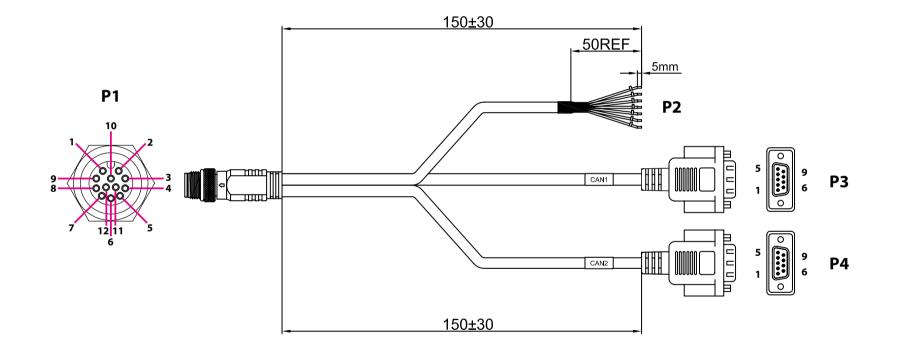
WLAN and mSATA Setting

Selecting the application type of the CN3 signal

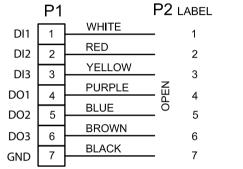
For Wi-Fi or mini-PCIe module, please select **PCIe** (PCIe + USB 2.0). For mSATA module, please select **SATA**.

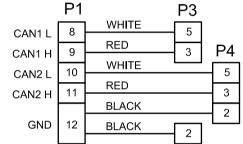
Onboard Module Setting		Select Connector Type.
WWAN1 Module WAN1 Wake Up Wake On LAN IAMT Low Power Wake Up POE Power RIC Alarm Time Reboot when Ignition is On CN18 Type INT settings in CAN Bus Module CAN Bus IRQ INT settings in CAN2 Bus Module CAN2 Bus IRQ	Enabled] Enabled] Disabled] Disabled] Enabled] Disabled] SATA] PCle SATA	→→→ Select Screen ↑↓: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit

Selecting the application type of the CN4 signal


For Wi-Fi or mini-PCIe module, please select **PCIe** (PCIe + USB 2.0). For mSATA module, please select **SATA**.

Version 2.20.1275. Copyright (C) 2021 American Megatrends, Inc.




APPENDIX F: PIN DEFINITION FOR THE MULTIPORT CABLE

Pinout Description

APPENDIX G: COM PORT TABLE

COM Port	Function
COM 1	RS232
COM 2	RS232
COM 3	RS232 / 422 / 485
COM 4	GNSS
COM 6	MCU

APPENDIX H: POWER CONSUMPTION

Test Equipment/Tool

- VTC 7252-7C4IP
- Windows 10 Enterprise Evaluation 1809 Build 17763.107 RS5
- Burn-in
- All modules

Test Condition

Room temperature

Test Procedure

Idle state, Full state, Full+loading state and IGN OFF state.

Idle	Full	Full + load
 Into OS Display x 3 Keyboard & mouse Audio All storages (Storage x 2, total 14w) Modules (mSATA x 2 + ZQ802XRACB + EM7430) 	 Idle state Modules (EM7430) Mini card dummy load (3.3w + 4.36w + 4.36w) Burn in at 100% (CPU + 2D + 3D + Disk + Sound + RAM + Video Playback + GPU) Play video COM transmission (COM1 + COM2 + COM3) GPS link 	 Full load state USB 3.0 dummy load (5V/1A x 4) USB 2.0 dummy load (5V/0.5A x 4) PoE dummy load (30w x 2)

Pass/Fail Criteria:

- 1. Start all of the functions on VTC 7252-7C4IP and measure power consumption.
- 2. Set the system into suspend mode and measure power consumption.

Result Test Case Item Device Average Peak Configuration Voltage Current(A) Current(A) Watt(W) Watt(W) 1.51 18.12 5.42 65.04 12V Idle State 0.79 18.96 2.91 69.84 24V 36V 0.53 19.08 1.98 71.28 12V 6.07 72.84 9.26 111.12 Full State (Burn-in) 73.2 106.32 24V 3.05 4.43 S0 State 36V 2.05 73.8 3.07 110.52 1 i7-9700TE 86.64 9.98 119.76 12V 7.22 35W Full State + Loading 87.84 4.81 115.44 24V 3.66 36V 89.64 3.34 2.49 120.24 12V 12.91 154.92 18.04 216.48 Full State + Loading 24V 6.49 155.76 7.51 180.24 (+ PoE 60W) 36V 4.35 156.6 5.08 182.88 12V 1.45 17.4 5.54 66.48 Idle State 24V 0.76 18.24 2.92 70.08 18.72 2.09 75.24 36V 0.52 12V 5.96 71.52 9.73 116.76 Full State (Burn-in) 72.48 4.07 97.68 24V 3.02 SO State 36V 2.03 73.08 3.06 110.16 E-2278GEL 2 12V 7.23 86.76 10.91 130.92 35W Full State + Loading 87.12 5.01 120.24 24V 3.63 36V 2.44 87.84 3.53 127.08 12V 12.97 155.64 17.59 211.08 Full State + Loading 24V 6.51 156.24 7.86 188.64 (+ PoE 60W) 155.52 5.22 187.92 36V 3.93

		Test Case		Result			
Item	Device	lest Case		Average		Peak	
		Configuration	Voltage	Current(A)	Watt(W)	Current(A)	Watt(W)
	3 S3 State Full State Sleep Mode		12V	0.92	11.04	N/A	N/A
3		12V wake up WWAN	0.94	11.28	N/A	N/A	
			12V	0.032	0.384	N/A	N/A
		12V wake up WWAN	0.07	0.84	N/A	N/A	
		E H CL L	24V	0.057	1.368	N/A	N/A
4 IGN OFF	Full State IGNITION OFF	24V wake up WWAN	0.079	1.896	N/A	N/A	
			36V	0.084	3.024	N/A	N/A
	_	36V wake up WWAN	0.103	3.708	N/A	N/A	